Coated Ascorbic Acid CAS No. 50-81-7

Product Details
Customization: Available
CAS No.: 50-81-7
Formula: C6h8o6
Still deciding? Get samples of US$ 1/kg
Request Sample
Manufacturer/Factory, Trading Company
Gold Member Since 2019

Suppliers with verified business licenses

Audited Supplier

Audited by an independent third-party inspection agency

Management System Certification
ISO 9001, ISO 14001, ISO 20000, ISO 22000
  • Coated Ascorbic Acid CAS No. 50-81-7
  • Coated Ascorbic Acid CAS No. 50-81-7
  • Coated Ascorbic Acid CAS No. 50-81-7
  • Coated Ascorbic Acid CAS No. 50-81-7
  • Coated Ascorbic Acid CAS No. 50-81-7
  • Coated Ascorbic Acid CAS No. 50-81-7
Find Similar Products

Basic Info.

Model NO.
feed grade
EINECS
200-066-2
Packaging Material
Paper
Storage Method
Normal
Shelf Life
>12 Months
Nutrient Composition
Vitamin
Resource
Chemosynthesis
The content of active substances
>90%
Store
Kept in a Light-Proof, Well-Closed, Dry and Cool P
Molecular Weight
176.13
Function
Antioxidant; Meat-Curing Acid ; Nutrient
Loading Port
Qingdao
Loading Port 2
Shanghai
Transport Package
25kg/Caron
Specification
BP/USP/FCC
Trademark
JK
Origin
China
HS Code
293627
Production Capacity
10000mt/Month

Product Description

Coated Vitamin C/Ascorbic Acid 97% DC is white to pale yellow granular powder with an acidic taste.  
Ingredients: ascorbic acid and starch
Specifications 
Item  Standard 
Appearance  White to pale yellow powder
with an acidic taste 
Identity for Ascorbic Acid  Corresponds (method: IR) 
Loss on Drying  Max. 0.25% 
Heavy Metals  Max. 10ppm 
Arsenic  Max. 3ppm 
Particle Size  Min. 95% through 20mesh  
  Max. 20% through 100mesh 
Bulk Density  0.70-0.90g/mol 
Total Plate Count  ≤1000CFU/g 
Total Molds Yeasts  ≤100CFU/g 
Coli Form Organisms  Negative/g  
Application
Especially suited for direct compression of tablets or used as food additive. 
Package
Net 20kg or 25kg per drum or paper carton, which is packed on pallets
Safety
This product is safe for the intended use. Avoid ingestion, inhalation of dust or direct contact by applying suitable protective measures and personal hygiene. For full safety information and necessary precautions, please refer to the respective Material Safety Data Sheet. 
Compendial Compliance
The ascorbic acid used in this formulation meets all requirements of the relevant monographs of the USP, FCC and pH. EUR, when tested according to these compendia. 
Stability and Storage 
This product is fairly stable to air if protected from humidity, but is somewhat sensitive to heat. The product may be stored for 24 months from the date of manufacture in the unopened original container and at room temperature below 25ºC. On prolonged storage, a slight yellow discoloration may occur which, however, does not affect the biological activity. 
Warning
If you are pregnant, nursing or taking any medications, consult your doctor before use. Discontinue use and consult your doctor if any adverse reactions occur. Keep out of reach of children. Store in a cool, dry place. 


Coated Ascorbic Acid CAS No. 50-81-7

 
L(+)-Ascorbic acid Basic information
Product Name: L(+)-Ascorbic acid
Synonyms: L-Ascorbic acid, 99.99% metals basis;Ascorbic aci;L-ASCORBIC ACID, REAGENT (ACS)L-ASCORBIC ACID, REAGENT (ACS)L-ASCORBIC ACID, REAGENT (ACS)L-ASCORBIC ACID, REAGENT (ACS);Ascorbic aicd;Nano Liposomal VC;Vitamin C (Ascorbic Acid) Liposome, Oil-Soluble Vitamin C;L-(+)-ASCORBIC ACID PWD;Ascorbic acid Manufacturer
CAS: 50-81-7
MF: C6H8O6
MW: 176.12
EINECS: 200-066-2
Product Categories: Antioxidant;Biochemistry;Sugar Acids;Sugars;Vitamins;Nutritional Supplements;PHARMACEUTICALS;Food and Feed Additive;Acid;Vitamins and Derivatives;Carbohydrates & Derivatives;Vitamin Ingredients;Food Additives,Medicine;Inhibitors;Intermediates & Fine Chemicals;Isotope Labelled Compounds;Used in medicine and Food Additives;vitamin
Mol File: 50-81-7.mol
 
 
L(+)-Ascorbic acid Chemical Properties
Melting point  190-194 °C (dec.)
alpha  20.5 º (c=10,H2O)
Boiling point  227.71°C (rough estimate)
density  1,65 g/cm3
FEMA  2109 | ASCORBIC ACID
refractive index  21 ° (C=10, H2O)
storage temp.  0-6°C
solubility  H2O: 50 mg/mL at 20 °C, clear, nearly colorless
form  powder
pka 4.04, 11.7(at 25ºC)
color  white to slightly yellow
PH 1.0 - 2.5 (25ºC, 176g/L in water)
PH Range 1 - 2.5
Odor Odorless
optical activity [α]25/D 19.0 to 23.0°, c = 10% in H2O
Water Solubility  333 g/L (20 ºC)
Merck  14,830
BRN  84272
Stability: Stable. May be weakly light or air sensitive. Incompatible with oxidizing agents, alkalies, iron, copper.
InChIKey CIWBSHSKHKDKBQ-JLAZNSOCSA-N
CAS DataBase Reference 50-81-7(CAS DataBase Reference)
NIST Chemistry Reference L-Ascorbic acid(50-81-7)
EPA Substance Registry System Ascorbic acid (50-81-7)
 
Safety Information
Hazard Codes  Xn
Risk Statements  20/21/22-36/37/38
Safety Statements  24/25-36-26
RIDADR  UN 1648 3 / PGII
WGK Germany  1
RTECS  CI7650000
TSCA  Yes
HS Code  29362700
Hazardous Substances Data 50-81-7(Hazardous Substances Data)
Toxicity LD50 oral in rat: 11900mg/kg
 
MSDS Information
Provider Language
L-Threo-2,3,4,5,6-pentahydroxy-1-hexenoic acid-4-lactone English
SigmaAldrich English
ACROS English
ALFA English
 
L(+)-Ascorbic acid Usage And Synthesis
Description Ascorbic acid, a water-soluble dietary supplement, is consumed by humans more than any other supplement. The name ascorbic means antiscurvy and denotes the ability of ascorbic to combat this disease. Vitamin C is the l-enantiomer of ascorbic acid. Ascorbic acid deficiency in humans results in the body's inability to synthesize collagen, which is the most abundant protein in vertebrates.
Chemical Properties White crystals (plates or needles). Soluble in water; slightly soluble in alcohol; insoluble in ether, chloroform, benzene, petroleum ether, oils and fats. Stable to air when dry. One international unit is equivalent to 0.05 milligram of l-ascorbic acid.
Chemical Properties Ascorbic acid occurs as a white to light-yellow-colored, nonhygroscopic, odorless, crystalline powder or colorless crystals with a sharp, acidic taste. It gradually darkens in color upon exposure to light.
Uses vitamin C is a well-known anti-oxidant. Its effect on free-radical formation when topically applied to the skin by means of a cream has not been clearly established. The effectiveness of topical applications has been questioned due to vitamin C's instability (it reacts with water and degrades). Some forms are said to have better stability in water systems. Synthetic analogues such as magnesium ascorbyl phosphate are among those considered more effective, as they tend to be more stable. When evaluating its ability to fight free-radical damage in light of its synergistic effect with vitamin e, vitamin C shines. As vitamin e reacts with a free radical, it, in turn, is damaged by the free radical it is fighting. Vitamin C comes in to repair the free-radical damage in vitamin e, allowing e to continue with its free-radical scavenging duties. Past research has indicated that high concentrations of topically applied vitamin C are photoprotective, and apparently the vitamin preparation used in these studies resisted soap and water, washing, or rubbing for three days. More current research has indicated that vitamin C does add protection against uVB damage when combined with uVB sunscreen chemicals. This would lead one to conclude that in combination with conventional sunscreen agents, vitamin C may allow for longer-lasting, broader sun protection. Again, the synergy between vitamins C and e can yield even better results, as apparently a combination of both provides very good protection from uVB damage. However, vitamin C appears to be significantly better than e at protecting against uVA damage. A further conclusion is that the combination of vitamins C, e, and sunscreen offers greater protection than the sum of the protection offered by any of the three ingredients acting alone. Vitamin C also acts as a collagen biosynthesis regulator. It is known to control intercellular colloidal substances such as collagen, and when formulated into the proper vehicles, can have a skin-lightening effect. Vitamin C is said to be able to help the body fortify against infectious conditions by strengthening the immune system. There is some evidence (although debated) that vitamin C can pass through the layers of the skin and promote healing in tissue damaged by burns or injury. It is found, therefore, in burn ointments and creams used for abrasions. Vitamin C is also popular in anti-aging products. Current studies indicate possible anti-inflammatory properties as well.
Uses antiscorbutic, antiviral
Uses analgesic, antipyretic
Uses Physiological antioxidant. Coenzyme for a number of hydroxylation reactions; required for collagen synthesis. Widely distributed in plants and animals. Inadequate intake results in deficiency syndrome s such as scurvy. Used as antimicrobial and antioxidant in foodstuffs.
Uses Sodium, potassium, and calcium salts of ascorbic acids are called ascorbates and are used as food preservatives. To make ascorbic acid fat-soluble, it can be esterified. Esters of ascorbic acid and acids, such as palmitic acid to form ascorbyl palmitate and stearic acid to form ascorbic stearate, are used as antioxidants in food, pharmaceuticals, and cosmetics. Ascorbic acid is also essential in the metabolism of some amino acids. It helps protect cells from free radical damage, helps iron absorption, and is essential for many metabolic processes.
Uses The starting point for synthesis of vitamin C is the selective of oxidation of the sugar compound D-sorbit to L-sorbose using Acetobacter suboxidans bacteria. L-sorbose is then converted to L-ascorbic acid, better known as vitamin C.
Production Methods Ascorbic acid is produced synthetically using the Reichstein process, which has been the standard method of production since the 1930s. The process starts with fermentation followed by chemical synthesis. The first step involves reduction of D-glucose at high temperature into D-sorbitol. D-sorbitol undergoes bacterial fermentation, converting it into L-sorbose. L-sorbose is then reacted with acetone in the presence of concentrated sulfuric acid to produce diacetone-L-sorbose, which is then oxidized with chlorine and sodium hydroxide to produce di-acetone-ketogulonic acid (DAKS). DAKS is then esterified with an acid catalyst and organics to give a gulonic acid methylester. The latter is heated and reacted with alcohol to produce crude ascorbic acid, which is then recrystallized to increase its purity. Since the development of the Reichstein process more than 70 years ago, it has undergone many modifications. In the 1960s, a method developed in China referred to as the two-stage fermentation process used a second fermentation stage of L-sorbose to produce a different intermediate than DAKS called KGA (2-keto-L-gulonic acid), which was then converted into ascorbic acid. The two stage process relies less on hazardous chemicals and requires less energy to convert glucose to ascorbic acid.
Indications Vitamin C (ascorbic acid) is essential for the maintenance of the ground substance that binds cells together and for the formation and maintenance of collagen.The exact biochemical role it plays in these functions is not known, but it may be related to its ability to act as an oxidation-reduction system.
Definition ChEBI: The L-enantiomer of ascorbic acid and conjugate acid of L-ascorbate.
Production Methods Ascorbic acid is prepared synthetically or extracted from various vegetable sources in which it occurs naturally, such as rose hips, blackcurrants, the juice of citrus fruits, and the ripe fruit of Capsicum annuum L. A common synthetic procedure involves the hydrogenation of D-glucose to D-sorbitol, followed by oxidation using Acetobacter suboxydans to form L-sorbose. A carboxyl group is then added at C1 by air oxidation of the diacetone derivative of Lsorbose and the resulting diacetone-2-keto-L-gulonic acid is converted to L-ascorbic acid by heating with hydrochloric acid.
Brand name Ascorbin (Marion Merrell Dow).
General Description White to very pale yellow crystalline powder with a pleasant sharp acidic taste. Almost odorless.
General Description Scurvy (from the French word scorbutus) has been recognized as a disease afflicting mankind for thousands of years. Citrus fruits such as oranges, lemons, and limes were later identified as equally effective treatments. Only within the last 100 years has a deficiency in vitamin C been definitively identified as the cause of scurvy. In 1932, Waugh and King isolated crystalline vitamin C from lemon juice and showed it to be the antiscorbutic factor present in each of these treatments. 
The structure and chemical formula of vitamin C was identified in 1933 by Hirst et al.Because humans are one of the few animal species that cannot synthesize vitamin C, it has to be available as a dietary component. Dietary sources of ascorbic acid include fruits (especially citrus fruits), vegetables (especially peppers), and potatoes. Although the sources of some commercial products are rose hips and citrus fruits, most ascorbic acid is prepared synthetically.
Vitamin C is now commonly referred to as ascorbic acid because of its acidic character and its effectiveness in the treatment and prevention of scorbutus (scurvy). The acidic character is because of the two enolic hydroxyls; the C3 hydroxyl has a pKa value of 4.1, and the C2 hydroxyl has a pKa of 11.6. All biological activities reside in L-ascorbic acid; therefore, all references to vitamin C, ascorbic acid, ascorbate, and their derivatives refer to this form. The monobasic sodium salt is the usual salt form.
Air & Water Reactions May be sensitive to prolonged exposure to air and light. Sensitive to moisture. Soluble in water. Aqueous solutions are oxidized by air in a reaction that is accelerated by alkalis, iron and copper. The rate depends on the pH and on oxygen concentration. Also subject to degradation under anaerobic conditions.
Reactivity Profile L(+)-Ascorbic acid is a lactone. Reacts as a relatively strong reducing agent and decolorizes many dyes. Forms stable metal salts. Incompatible with oxidizers, dyes, alkalis, iron and copper. Also incompatible with ferric salts and salts of heavy metals, particularly copper, zinc and manganese .
Fire Hazard Flash point data for L(+)-Ascorbic acid are not available; however, L(+)-Ascorbic acid is probably combustible.
Pharmaceutical Applications Ascorbic acid is used as an antioxidant in aqueous pharmaceutical formulations at a concentration of 0.01-0.1% w/v. Ascorbic acid has been used to adjust the pH of solutions for injection, and as an adjunct for oral liquids. It is also widely used in foods as an antioxidant. Ascorbic acid has also proven useful as a stabilizing agent in mixed micelles containing tetm.
Clinical Use Vitamin C is indicated for the treatment and prevention of known or suspect deficiency. Although scurvy occurs infrequently, it is seen in the elderly, infants, alcoholics, and drug users.Ascorbate can also be used to enhance absorption of dietary nonheme iron or iron supplements. Ascorbic acid (but not the sodium salt) was historically used to acidify the urine as a result of excretion of unchanged ascorbic acid, although this use has fallen into disfavor. Ascorbate also increases iron chelation by deferoxamine, explaining its use in the treatment of iron toxicity.
Clinical Use Vitamin C is found in fresh fruit and vegetables. It is very water soluble, is readily destroyed by heat, especially in an alkaline medium, and is rapidly oxidized in air. Fruit and vegetables that have been stored in air, cut or bruised, washed, or cooked may have lost much of their vitamin C content. The deficiency disease associated with a lack of ascorbic acid is called scurvy. Early symptoms include malaise and follicular hyperkeratosis. Capillary fragility results in hemorrhages, particularly of the gums. Abnormal bone and tooth development can occur in growing children.The body's requirement for vitamin C increases during periods of stress, such as pregnancy and lactation.
Side effects Megavitamin intake of vitamin C may result in diarrhea due to intestinal irritation. Since ascorbic acid is partially metabolized and excreted as oxalate, renal oxalate stones may form in some patients.
Toxicology L-Ascorbic acid, or vitamin C, is widely present in plants. The structures of ascorbic acid and dehydroascorbic acid are shown in Figure 10.5. Vitamin C is not only an important nutrient but is also used as an antioxidant in various foods. However, it is not soluble in fat and is unstable under basic conditions. Vitamin C reduces cadmium toxicity and excess doses prolong the retention time of an organic mercury compound in a biological system. Overdoses of vitamin C (106 g) induce perspiration, nervous tension, and lowered pulse rate. WHO recommends that daily intake be less than 0.15 mg/kg. Toxicity due to ascorbic acid has not been reported. Although repeated intravenous injections of 80 mg dehydroascorbic acid was reported to be diabetogenic in rats, oral consumption of 1.5 g/day of ascorbic acid for six weeks had no effect on glucose tolerance or glycosuria in 12 normal adult males and produced no change in blood glucose concentrations in 80 diabetics after five days. The same report noted that a 100-mg intravenous dose of dehydroascorbic acid given daily for prolonged periods produced no signs of diabetes. Ascorbic acid is readily oxidized to dehydroascorbic acid, which is reduced by glutathione in blood.
Safety Profile Moderately toxic by ingestion and intravenous routes. Human systemic effects by intravenous route: blood, changes in tubules (including acute renal failure, acute tubular necrosis). An experimental teratogen. Other experimental reproductive effects. Mutation data reported. When heated to decomposition it emits acrid smoke and irritating fumes.
Safety Ascorbic acid is an essential part of the human diet, with 40 mg being the recommended daily dose in the UK and 60 mg in the USA. However, these figures are controversial, with some advocating doses of 150 or 250mg daily. Megadoses of 10 g daily have also been suggested to prevent illness although such large doses are now generally considered to be potentially harmful.
The body can absorb about 500 mg of ascorbic acid daily with any excess immediately excreted by the kidneys. Large doses may cause diarrhea or other gastrointestinal disturbances. Damage to the teeth has also been reported. However, no adverse effects have been reported at the levels employed as an antioxidant in foods, beverages, and pharmaceuticals. The WHO has set an acceptable daily intake of ascorbic acid, potassium ascorbate, and sodium ascorbate, as antioxidants in food, at up to 15 mg/kg bodyweight in addition to that naturally present in food.
LD50 (mouse, IV): 0.52 g/kg
LD50 (mouse, oral): 3.37 g/kg
LD50 (rat, oral): 11.9 g/kg
storage In powder form, ascorbic acid is relatively stable in air. In the absence of oxygen and other oxidizing agents it is also heat stable. Ascorbic acid is unstable in solution, especially alkaline solution, readily undergoing oxidation on exposure to the air.The oxidation process is accelerated by light and heat and is catalyzed by traces of copper and iron. Ascorbic acid solutions exhibit maximum stability at about pH 5.4. Solutions may be sterilized by filtration.
The bulk material should be stored in a well-closed nonmetallic container, protected from light, in a cool, dry place.
Purification Methods Crystallise it from MeOH/Et2O/pet ether [Herbert et al. J Chem Soc 1270 1933]. [Beilstein 18/5 V 26.]
Incompatibilities Incompatible with alkalis, heavy metal ions, especially copper and iron, oxidizing materials, methenamine, phenylephrine hydrochloride, pyrilamine maleate, salicylamide, sodium nitrite, sodium salicylate, theobromine salicylate, and picotamide. Additionally, ascorbic acid has been found to interfere with certain colorimetric assays by reducing the intensity of the color produced.
Regulatory Status GRAS listed. Accepted for use as a food additive in Europe. Included in the FDA Inactive Ingredients Database (inhalations, injections, oral capsules, suspensions, tablets, topical preparations, and suppositories). Included in medicines licensed in the UK. Included in the Canadian List of Acceptable Non-medicinal Ingredients.
 
L(+)-Ascorbic acid Preparation Products And Raw materials
Preparation Products Gardenia blue pigment-->Magnesium ascorbyl phosphate-->BETANIN-->L-Carnitine-L-tartrate -->L-Ascorbyl 6-palmitate-->Hibiscetin-->Calcium diascorbate-->Sodium ascorbate-->L-ASCORBYL 6-STEARATE-->L-Threonic acid calcium salt
Raw materials Sodium methanolate-->Sodium hypochlorite-->D-Sorbitol-->2-Furoic acid-->Nickel sulfate -->D-Sorbitol-->Sodium erythorbate-->Gluconic acid-->Acetonylacetone-->GLOBULINS, CAT GAMMA-->SODIUM ERYTHORBATE-->Sodium ascorbate



Hunan JK International Trade Corporation / JK BIO-CHEM CO.,LTD is a professional exporter of food/feed additives and food /feed ingredients in China. With years of development, now we are able to provide the following food additives and food ingredients: thickeners, antioxidants, preservatives, vitamins, sweeteners, proteins, acidulants, nutritional supplements, flavours, coenzyme and so on.
Our food additives and food ingredients, especially our Ascorbic Acid (Vitamin C), Acesulfame-K, Aspartame, Citrates, Dextrose, D-Xylose, Erythorbic Acid, Fumaric Acid, Fructose,Maltodextrin, Malic Acid, Monosodium glutamate, Lactic Acid Potassium Sorbate, Sodium Erythorbate, Sodium Cyclamate, Sodium Saccharin, sodium benzoate, Sodium ascorbate, Sorbic Acid, xanthan Gum, Xylitol, Tartaric Acid, I+G, , Vanillin, Sucralose, Stevia and so on, have been exported to more than 60 countries for our good quality products.
Our staff of sales and technical support is available to help you in selecting the right protection for your application as well as to provide you with samples of our products for evaluation. At High Five, we are committed to providing the highest level of customer service, competitive pricing, speedy delivery and a comprehensive, cutting-edge product offering. Our ultimate goal is your satisfaction.





Packing&Shipping 

Coated Ascorbic Acid CAS No. 50-81-7Coated Ascorbic Acid CAS No. 50-81-7
FAQ

Q1.What's the payment terms?
We could accept T/T, L/C, DP payment terms.

Q2.How about the different index of products in same application?
Specifications can be customized according to your application.

Q3.How about the samples of products?
We can provide free samples under 2Kg(not including freight charge).

Q4.How about the price of products?
Our products are chemical synthesis got from underground brine, which is available for a variety of usage. Our products are high purity with good quality, and the price is based on different specification and quantity.

Q5.What's the shelf life for the cargoes?
Our product's shelf life is 2 years, which is based on dry and ventilated storage.

Q6.What's the package of the cargoes?
20kg/25kg woven bags, within plastic bags, or as customized.

Q7.What's the delivery time?
We usually deliver the cargoes within 10~20 days after receiving customer's payment or original L/C.


Q8.Which documents can we supply?
Commercial Invoice, Packing List, Certificate of Analysis, Certificate of Origin (FORM E), Bill of Loading, ISO etc.
The documents will be sent by Express within 24 hours against your full payment.

Q9.Why do you choose us?
We accept safe and diversified payment terms.
We supply a price trend to ensure clients know marketing information in time. We will take charge of 100% responsibility for
quality issue. We strive to create value for each customer we serve by meeting their unique needs and providing solutions to solve their problems and achieve their objectives.






Coated Ascorbic Acid CAS No. 50-81-7Coated Ascorbic Acid CAS No. 50-81-7Coated Ascorbic Acid CAS No. 50-81-7Coated Ascorbic Acid CAS No. 50-81-7Coated Ascorbic Acid CAS No. 50-81-7Coated Ascorbic Acid CAS No. 50-81-7






 

Send your message to this supplier

*From:
*To:
*Message:

Enter between 20 to 4,000 characters.

This is not what you are looking for? Post a Sourcing Request Now
Contact Supplier